首页> 外文OA文献 >Zero Step Capturability for Legged Robots in Multi Contact
【2h】

Zero Step Capturability for Legged Robots in Multi Contact

机译:多触点腿式机器人的零步捕获

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The ability to anticipate a fall is fundamental for any robot that has to balance. Currently, fast fall-prediction algorithms only exist for simple models, such as the Linear Inverted Pendulum Model (LIPM), whose validity breaks down in multi-contact scenarios (i.e. when contacts are not limited to a flat ground). This paper presents a fast fall-prediction algorithm based on the point-mass model, which remains valid in multi-contact scenarios. The key assumption of our algorithm is that, in order to come to a stop without changing its contacts, a robot only needs to accelerate its center of mass in the direction opposite to its velocity. This assumption allows us to predict the fall by means of a convex optimal control problem, which we solve with a fast custom algorithm (less than 10 ms of computation time). We validated the approach through extensive simulations with the humanoid robot HRP-2 in randomly-sampled scenarios. Comparisons with standard LIPM-based methods demonstrate the superiority of our algorithm in predicting the fall of the robot, when controlled with a state-of-the-art balance controller. This work lays the foundations for the solution of the challenging problem of push recovery in multi-contact scenarios.
机译:预测跌倒的能力对于任何必须保持​​平衡的机器人都是至关重要的。当前,快速跌倒预测算法仅适用于简单模型,例如线性倒立摆模型(LIPM),其有效性在多触点情况下(即,当触点不限于平坦地面时)会失效。本文提出了一种基于点质量模型的快速跌倒预测算法,该算法在多接触场景下仍然有效。我们算法的关键假设是,为了不改变接触而停下来,机器人只需要沿与速度相反的方向加速其质心。该假设使我们能够通过凸优化控制问题来预测下降,我们可以使用快速的自定义算法(小于10毫秒的计算时间)解决该问题。我们通过在随机采样的场景中使用人形机器人HRP-2进行了广泛的仿真,验证了该方法。与基于LIPM的标准方法的比较证明了,当使用最新的平衡控制器进行控制时,我们的算法在预测机器人跌落方面具有优势。这项工作为解决多触点方案中的推挽式恢复这一具有挑战性的问题奠定了基础。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号